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A cylindrical object growing at a low Reynolds number can spontaneously develop a helical shape. We have
studied this phenomenon numerically, and our results may shed some light on the spontaneous formation of
helical tails of a dense protein network observed in experiments on actin based motility. We also identify an
unstable critical pitch angle which separates helices that straighten into rods from helices that flatten into planar
curves as they grow. At the critical angle the pitch angle remains constant, whereas both helical diameter and
pitch increase with the helical contour length.
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I. INTRODUCTION

Translating an irregularly-shaped object in a fluid at low
Reynolds number will, in general, induce a concurrent rota-
tion. The magnitude and axis of this rotation depend only on
the shape of the object, the orientation of the object, and the
translation vectorsor velocityd. Consider an object powered
by a rigidly mounted engine, which produces constant thrust.
In the body-centered reference frame, the thrust, or force,f,
is a constant vector. The velocity and angular velocity are
also constant in this frame due to the drag tensor relation-
shipsv=Af and v=Bf f1g, whereA and B depend only on
the shape of the object.1 In the observer frame we find that
v̇=v3v, ḟ =v3 f, andv̇=v3v=0. So the angular veloc-
ity vector is constant in the observer frame as well. As ex-
plained further in Appendix A, the geometry of the path can
be determined from the rotation vectorkssd=vstd / uvstdu by
associating it with the Darboux vector of the Frenet-Serret
parametrization of the path. Constantk means the path is a
straight line, circle or regular helix. Various microorganisms
display these geometries inhelical klinotaxisas they locate
favorable environmentsf2g.

In this paper we study a related issue. How would the
hydrodynamic forces on an irregular object that is growing
affect the growth? Inspired by a biological system, in which
helical “tails” of densely gelled F-actin grow from N-WASP
coated micron-sized beads immersed in a broth of appropri-
ate proteins, we examine what would happen to an object
that is pushed through a viscous fluid as it grows out from a
fixed point in space in a constant direction. The growth pro-
cess generates constant thrust, but in this case the shape of
the object changes as the object grows. As hydrodynamic
drag causes the object to rotate, new material is added at
various angles. The surprising result from our simulations is
that even with random perturbations, helical shapes naturally
emerge.

Our specific goal is to examine the possible role of hydro-
dynamics in influencing the shape of “comet tails,” or trails

of a polarized network of actin filaments which form during
the locomotion of many infectious pathogens such as listeria
moncytogenesf3–5g, rickettsia f5,6g, and shigellaf6,7g, as
well as subcellular organellesf8–12g. An enzyme coating on
the surface of the bacteriasor other cargod causes actin fila-
ments to grow there preferentially, and this growth generates
force via the energetically favorable addition of actin mono-
mers to the tips of existing actin filaments in the gel. This
process requires the intercalation of actin monomers at the
bead surface. Viscous drag, possibly enhanced by intercon-
nections with actin filaments in the surrounding solution, an-
chors the comet tail, and so the bacterium is pushed away
from the existing tail.

Comet tail motility has been discussed extensively in the
biological literature and is considered a prototype system for
understanding the molecular mechanisms of cell locomotion.
On one hand, this kind of motion appears in both deadly
microbes and functional subcellular organelles. On the other
hand, it provides a clear experimental arena in which to ex-
plore general features of cytoskeletal actin dynamics. This is
because unlike other forms of actin based motilityse.g., fili-
podia and lamellipodiad, which involve the complex dynam-
ics of chemical signaling and control, the comet tail motility
system is spontaneous, requiring only an enzyme coating on
small object2 and a few factors already present in a host cell
cytoplasm. The raw material and energy come from the host
cell, which plays only a passive role.

As a proof of this simplicity, comet tail motility can be
completely reproduced in vitro. Micrometer-sized beads
f13–15g, liposomesf16g and oil dropsf17g, when coated with
appropriate enzymes, have all been shown to initiate actin-
based motility in tissue extracts and even artifical mixtures of
essential proteins. This work was particularly inspired by
some anomalous results of experiments in completely cell-
free systems. Under certain conditions beads have been ob-

1This can also be thought of as decomposition of the viscous
response into Stokeslets and rotlets. When the Reynolds number
Re=0, the response is a linear sum of these fundamental Green’s
function tensors.

2This property—that the motility relies almost entirely on con-
stituents of the host cell—suggests it could also be possible to use
this method for delivering drugs into cells.
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served to grow twin, symmetrical helical comet tails.3 The
observed mirror handedness of the tails places limits on the
possible contribution of molecular handedness. Furthermore,
the thickness of the tails is about the same as the bead diam-
eter, and the scale parameters of the helicessFig. 1d are just
a few times this. So the helical tails represent a pattern
emerging spontaneously at the largest length scales in the
system. In this work, we explore the possibility that hydro-
dynamic forces play a role in this type of spontaneous pat-
tern formation. Additionally, a separate recent study shows
motile listeria that consistently follow right-handed helical
trajectoriesf18g. Although the helicity of the actin filaments
is thought to drive this pattern, the particular paths traced out
are undoubtedly affected by hydrodynamic forces as well.
Our model may provide an additional tool for analyzing
these comet tails.

We turn now to the growth process. Out of the bead grows
an object which is a thin, bent rod. Measurements of shape,
structure and protein concentration on listerial comet tails, as
well as manipulation of bead induced tails using laser twee-
zers suggest that they are rigid objectssY,103–104 Pad
f19g, and there is no indication of the bends in comet tails
straightening out due to relaxation. On the other hand, there
must still be some freedom for the tail to move relative to the
bead where the tail grows sinces1d the growth requires the
intercalation of new material at the bead surface, ands2d the
tails generally grow in curvy shapes. The general idea is of a
rigid substance extruded into a fluid at low Reynolds number
sRed such that it has a degree of freedom to rotate at the point
of generation. An analogy might be a stream of hot glue
being injected into a cold bath of glycerin.

We have simulated this process and found that stable, he-
lical growth naturally emerges, but with some irregular fea-
tures. We looked at the growth dynamics for a range of he-
lical seeds and sampled the statistics of helices which grow
from random initial conditions. We also examined the effect
of random perturbations to the growth. Although the system
is simple to describe mathematicallysAppendix Ad, it is ana-
lytically intractable to solve. Nevertheless, we try to explain
the results within the theoretical context of the model in light
of the simulation results.

II. METHODS

Simulation

Our simulation runs as follows. We imagine a point on a
plane from which material emerges normal to this plane in
the form of thin cylindrical segments. We impose a transla-
tion of a fixed amount normal to the plane, calculate and
perform the resulting rotation of the existing tail, and finally
add the new piece of tail between the base of the existing tail
swhich now lies above the growth plane after translation and
rotationd and the origin in the growth plane. There is no need
to calculate the forces and torques since we can calculate the
resulting rotation directlys6d. We simplify our calculations
by referring to a frame centered at the point of growth, where
the assumed force due to growth is applied. In this frame the
applied torque is identically 0. The resulting rotation does
not depend on the viscosity of the fluid since the viscosity
falls out of the rotation equationsexplained laterd. Though
seemingly paradoxical, this directly results from assuming
the Reynolds number Re!1. As a result, the only truly free
parameter is the length of the growth segmentssessentially
the velocity at constant time stepsd, and to make the time
steps effectively small we simply keep this length small
compared to the size of the seed. In this sense, our simulation
is “scale free.” We choose the size of the seed helix, which is
arbitrary, and we then pick the growth segment size to be
small enough to get smooth growth.

We calculate the drag using the resistive force theory of
hydrodynamicssRFTd f20g in which a curvy, slender object
is modeled as a series of cylindrical elements which have
drag coefficients per unit length both parallel and perpen-
dicular to their symmetry axis such thatf i=zivi and f'

=z'v'. Decomposingv into vi= l̂ l̂ ·v and v'=s1− l̂ l̂d ·v,

where l̂ is a unit vector pointing in the direction of an ele-
ment of lengthl, we can write

f = fzil l̂ l̂ + z'ls1 − l̂ l̂dg ·v. s1d

This implies a drag tensor

D = lz'„1 − s1 − qdl̂ l̂… = lz'„di,j − s1 − qdl̂ i l̂ j…. s2d

The parameterq=zi /z' holds information about the relative
importance of longitudinal and transverse drag. For a simple
fluid, q=1/2. Long polymers can inhibit transverse motion
of long objects, so a high concentration of long polymers
will make q smaller. An object element at positionr n moves
with a velocity vsr nd and experiences a forcefsr nd
=Dsr ndvsr nd, or more conveniently,

fn = Dnvn. s3d

The net forcesfd and torquestd on the object as a whole are
linear functions of the velocitysvd and angular velocitysvd
through the net drag tensors for the object as a whole. We
calculate these tensors from theDn via sums over all ele-
ments of the object usingfn= f tot+vtot3 r n andtn=r n3 fn:

3Private communications with Sebastian Wiesner and Marie-
France Carlier, CNRS.

FIG. 1. Illustration of one turn of a helix “wrapped” and “un-
wrapped.” Asz increases along the vertical edge by one pitch, the
distance along the helix increases by the hypotenuse,s=p/a.
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To generate translation, a force must be applied at the base of
the tail, which lies at the origin in the growth plane,r 0. We
refer torque calculations to this point. Force balance with
perfect drag dictates that

S f tot

ttot
D = S fapplied

tapplied
D + S fdrag

tdrag
D = S0

0
D . s5d

Since we chooser 0 such thattapplied=r 03 fapplied=0 we au-
tomatically impose the additional constraint thattdrag=0. By
doing so, we can write

v = − DRR
−1DRLv. s6d

At time t, we describe the tail or object by an ordered set of
points which represent the meeting pointssor nodesd be-
tween hypothetical, small, cylindrical elements. Let us de-
note this set of points, which form the “tail,” by anN33
matrix sor “hypervector”d

Tstd =3
r 0

r 1

r 2

A
r N

4 =3
0 0 0

x1 y1 z1

x2 y2 z2

A A A
xN yN zN

4 . s7d

To evolveT, we calculatev andv by s6d and construct the
rotation operatorRstd;Rlmstd=expf−Dtvkstd«klmg. We use
another hypervector,

Vstd = 3
v0

v0

A
v0

4 s8d

to translate every element of the tail. Note that in our simu-
lation, v0 represents each added segment, and has units of
lengthsthe time is implicitly one stepd. To update our object,
we first rotate and then translate the existing tail

Tst + Dtd = TstdRstdT + Vstd. s9d

The base of the tail is no longer at the origin after this trans-
lation, so we finally lengthen the tail by adding a new node at
the origin. There are nowN+1 points. Eachr n is relabled
r n+1 and we create a newr 0=s0 0 0d,

T → Fs0 0 0d
T

G . s10d

In some simulations we also included random perturbations
to the growth. We perturbed the growth by choosing a ran-
dom orientation forv0. While unperturbed sections point in
the ẑ direction, and the perturbed sections point toward

cosf sinu x̂ + sinf sinu ŷ + cosu ẑ, s11d

wheref is a uniformly distributed arbitrary numberf0,2pg
andu a random number with the mean value 0 and variance
s2. We found that these perturbations do not greatly affect
the stability of growth.

We now address the role of viscosity. A proportionality
factor betweenv andv can only have units ofl−1. The units
of DRR andDRL are l3z and l2z, respectively, so the combi-
nation −DRR

−1DRL fsee Eq.s6dg does have the expected
units—the viscosity divides out. This does not mean that
viscosity is not important for this system—it is crucial. In
fact, our entire theory, including the definition of drag ten-
sors, is based on the Re→0 limit. That z falls out merely
tells us that in this limit, theparticular value of the viscosity
does not affect the hydrodynamic response of the tail in
terms of its net rotation.

III. ANALYSIS OF HELIX GEOMETRY

Two convenient parameters for describing the shapesor
instantaneous shaped of a helix are the pitchp sdistance be-
tween turnsd and the diameterD sFig. 1d. One intuitive way
to make a helix would be to feed a pipe cleaner through
one’s fingers at a constant rate, while simultaneouslysor al-
ternatelyd bending it and twisting it. For each time step:

s1d Push the pipe cleaner a little further through one’s
fingers and thumb.

s2d Apply a small twist with one’s fingers and thumb.
s3d Take the other hand and bend over a small angle at

the base of the exposed part.
If one bends and twists at constant rates one gets a regular
helix. Steadily slowing the rates of bending or twisting yields
a helix that becomes wider and steeper. The two control pa-
rameters are the “bend” and “twist.” Since the twist vector
runs parallel to the wire, we call itk i and the bend vectork'.
These vectors are rotation rates with respect to distance. The
following relations holdsAppendix Ad:

p = 2puvu
uviu
uvu2

= 2p
uk iu
uk u2

, D = 2uvu
uv'u
uvu2

= 2
uk'u
uk u2

, s12d

where v is the feeding rate. The ratio of bend and twist
determines the “shape” of the helix, or how it looks. This
ratio is related to the “pitch angle,”x, by

tanx =
uk'u
uk iu

=
pD

p
. s13d

The relations between these parameters are illustrated in Fig.
1 and are detailed in Appendix A.

IV. RESULTS

Our most important result is that the growth of a general-
ized, expanding helix can emerge spontaneously even when
we run simulations from random initial conditions
fFig. 2sadg. The pitch and diameter increase proportionally,
but the axis and the helical angle remain constant. We used
Eq. s11d to build the first three segments and then let the
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simulation run. Even random perturbations to the subsequent
growth did not alter this result.

Understandably, as the tail gets longer, a perturbation to a
single segment becomes less and less important. An impor-
tant additional insight gained from these tests is how the
initial “seed” determines the shape of the emerging helix.

Essentially, the three initial segments form a minimum struc-
ture needed to define an initial bend and twist. To show this
we sampled the statistics of the helical parameters of ran-
domly generated helices. Referring back tos11d, Df, the
difference of successive azimuthal angles, is essentially a
“twist” and Du a “bend,” i.e.,uk iu= uDfu and uk'u= uDuu. Ac-

FIG. 2. Representative simulation results showing helices, which grow out of a range of seeds.sad The result of a single simulation run
for a helix growing out of thex-y plane. The “older” units are shaded darker. This helix was grown for 200 additional units from a random
seed three units long.sbd A helix grown atx=xcrit for 10 000 steps from a seed helix 300 steps long.scd A helix grown for 10 000 steps from
a seed with a large pitch anglesx=70°d 300 steps long.sdd A helix grown for 10 000 steps from a seed with a small pitch anglesx
=20°d 300 steps long.
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cording tos13d, tanx= uk'u / uk iu= udu /dsu / udf /dsu sin an in-
stantaneous sensed. To approximate the result of randomly
chosenu andf we look at4

tanx >
kuDful

pkuDuul
=

p1/2

3s
=

0.591. . .

s
.

We do find this functional dependence ons in our simula-
tions where we get

K ufu
uuu L <

0.7 ± 0.1

s
.

To better understand the stability we ran long-time simula-
tions with fixed helical seeds representing a range of initial
pitch angles. We used seed helices withx=np /48 for n
P h1. . .23j, giving p/D a range of values,0.07, 0.14, . . .,
and 15.26. For each pitch angle and in each of 100 trials, we
let the growth continue for 6000 time steps, generating 2–6
full turns of a helix. The typical results are illustrated in Figs.
2sbd–2sdd for 10 000 time steps. When the initial conditions
are a regular helix, the tail grows into an expanding helix
that is heavily influenced by the seed helix. One interesting
effect is that even for very large seedss4–5 turnsd the first
growth step does not match the seed helix, a property ex-
plored in detail later. This is evidently another manifestation
of the fact that regular helical growth is not stable. Instead,
the stable growth is a generalized helix with expanding pitch
and diameter.

V. SCALING AND CRITICAL ANGLES

Referring back tos6d, DRR
−1DRL scales likes−1, wheres is

the contour length of the tail, so we expect

ukssdu−1 =
Îpssd2 + fpDssdg2

2p
< cs s14d

for some constant,c srecall that uvu is held constantd. This
linear relationship foruk u does emerge in our simulations
fFig. 3sadg. However, the individual componentsuk iu=t uk u
=sp/2pduk u and uk'u=ruk u=sD /2duk u do not consistently
scale linearlyfsee, for instance, Fig. 4sadg.

Interestingly, we also notice a critical angle that deter-
mines the scaling properties ofuk u, P and D, and other pa-
rameters as well. The diameter evolves close to linear and
makes a transition atxcrit where the coefficientcdiametergoes
from .1 to ,1 fFig. 4scdg. The pitch grows almost linearly
for angles above critical angle 50.3°,xcrit ,53.8°, but a
close inspection shows that it is actually only linear atxcrit
sFig. 4d. A magnified display around the critical range shows
that xcrit represents a maximum forcpitch and an inflection
point for cdiameterfFig. 4sddg.

When we examine the value of the slope,cinvskd in the
expression ofuk u−1 as in Eq.s14d, we see two regimes and the
crossover appears to be atxcrit fFig. 3sbdg, where the slope
happens to be 2/p. A similar transition appears in the graph
of the final sevolvedd value of x versus early but stabilized
values fFig. 5sbdg. Here the transition atx final=xcrit goes
from a linear regime to what appears to be a stable oscilla-
tory point atx final=90°. The critical angle shows up again in
the evolution of the value ofx, the pitch anglefFig. 5sadg. As
stated before, the value ofx is generally not constant as the
helix grows. It makes a transition from increasing whenx
,xcrit to decreasing whenx.xcrit. xcrit appears to be a
stable value at which the helix grows in a special way: the
pitch and diameter each increase but always in a way that

4The true statistic averagekuDfu / uDuul is divergent. Perturbations
in the subsequent simulation ultimately drive the system away from
the Du=0 case, but corrections to the approximate statistics would
involve subsequent hydrodynamic interactions.

FIG. 3. Simulation results showing progression of helical shapes depending on the initial and early stage helical angles.sad The inverse
of the magnitude of the rotation vector,uk u−1, increases linearly with length as the helix grows. This result agrees with the theory.sbd The
slope,c, of the lineuk u−1=cl for various values ofx shows a transition atxcrit, wherecinvskd=2/p. xearly is the value ofx after it has stabilized
in about 150 time steps.
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preserves the pitch angle. We have no explanation for the
origin of the critical values. But we find it interesting that
xcrit appears close to the observed value ofx in the twin tails
observed experimentallyf21g. However, this cannot explain
the phenomenon sincexcrit appears to be an unstable critical
point, i.e., sample runs that start out away fromxcrit do not
converge toxcrit sFig. 5d.

VI. CONCLUSION

These simulations show that a regular pattern of growth
can emerge when an object in a low Reynolds number envi-
ronment grows in such a way that the bulk of the object

pushes away from where the growth takes place. The object
may spontaneously grow into an expanding helix in which
the pitch and diameter increase as the growth continues. We
identify a critical angle at which the growth stabilizes such
that the pitch angle remains constantsalthough the pitch and
diameter still individually increased.

This study has been inspired by a biomimetic system in
which an enzyme coated bead grows a pair of symmetric
helical “comet tails.” We report without explanation that the
critical angle mentioned above is very close to the observed
pitch angle in these helical growths. But the actual role hy-
drodynamics might play in the formation of twin helical
comet tails remains unclear, especially sincexcrit is not a

FIG. 4. Evolution of helical pitch and diameter above and below the critical pitch angle.sad The pitch shows a transition from a regime
of nonlinear growth at high pitch angle to linear growth at belowxcrit. sbd In order to illustrate the transition at the critical pitch anglexcrit,
deviation is plotted for the lines forx nearxcrit from the line forxcrit, pitchsxd−pitchsxcritd. scd cdiameter for various values ofx shows a
transition fromc,1 to c.1 atxcrit. sdd To further illustrate that the slope is greatest atxcrit, the slopes of pitch and diameter are plotted as
functions ofx. The diameter exhibits a fairly linear increase with the contour length l. For the pitch, we calculatecpitch for only the slope of
the last 10% of the curve.
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stable critical point. Clearly in the case of the comet tails
there is much more going on. For instance, the pitch and
diameter remain more or less constant in the growth of heli-
cal comet tails.

In summary, we have identified a form of spontaneous
pattern formation due to hydrodynamic forces. The role of
hydrodynamics has been examined in this work as one pos-
sible contribution to the overall dynamics of helical comet
tails. More study may reveal the full picture for the comet
tail system and lead to a better overall understanding of cy-
toskeletal actin dynamics. Whether or not the mechanism
analyzed in this work is relevant to other physical systems,
and perhaps even manufacturing processes, remains to be
seen.

APPENDIX A: MATHEMATICAL DESCRIPTION
OF A HELIX

A helix trajectory is formed as one constantly turns left
sor rightd while climbing uphill. The path ones travels can be
fully described by two parameters: the turning radiusshow
sharply one turns left or rightd and the pitchshow steeply
uphill one climbsd. The first parameter,r, is the radius of the
circle you make when viewed from directly above, and the
second can take the form of an angle,x sthe pitch angle to
the verticald or a wavelength,p, the wavelength of the sine
wave you make as viewed directly from the side. A simple
mathematical description of this isrW =r coss2p /pdzx̂
+r sins2p /pdzŷ+zẑ, but if the axis of the helix is in a gen-

FIG. 5. Simulation results relating helical angles of an initial seed, the early progression, and the stabilized shape.sad The only value of
x for which x remains constant isxcrit. Either above or below this value, the pitch angle diverges fromxcrit. sbd The ultimate value ofx
during growth is a function ofxseed, the pitch angle of the seed helix. Notice that forx,xcrit points lie below the dotted line showing
x final=xinitial, and above the line forx.xcrit. Thusx diverges away fromxcrit during growth. Note that the dotted line does not cross the
graph atxcrit as it should ifxcrit really represents the value for whichdx /ds=0. The reason is that the seed helix is a regular helix, and
therefore does not represent stable growth. That is the origin of the counterintuitive result that, for a regular helix seed to end up withx
=xcrit, the original value ofx is notxcrit. To get around this, we look at the “stabilized” value ofx after the initial jump. We could avoid this
by using a seed helix with the growth pattern that spontaneously emerges, but this is difficult to do in practice.scd The initial jump inx is
most noticeable for addition of the first segment.sdd The value ofx stabilizes after about 200 time steps out of 6000.
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eral direction, sayê3, then we must describe this helix byrW
=r coss2pz/pdê1+r sins2pz/pdê2+zê3. If we use the dis-
tance, s, along the helix as the parameter instead of the
height,z, we can write

rW = r cos
as

t
ê1 + r sin

as

t
ê2 + asê3, sA1d

wheret=p/2p,6 anda=t /Ît2+p2=cossxd sFig. 1d. x is the
constant angle a helix makes with its axis, by which we
mean the angle between the axis and the tangent vectort̂
=drW /ds. If the axis of the helix is a vectork̂, then cosx
= t̂ ·k̂ =a. Another way to derivesA1d as the representation of
a helical space curve is to model the curve obtained if we
wrap t̂ around the rotation vectorkssd which points along the
axis of the helix and a tangent vector to the helix at some
point s0, t̂ss0d. If the helix is uniform,kssd=k. The tangent
vector along the helix at a distances from s0 is

t̂ssd = expfss− s0dkg 3 t̂ss0d = expf− ss− s0dki«i jkgt̂ jkss0d
sA2d

so cosx=k ·t̂ssd=k ·t̂ss0d and the space curve of the helix is
r =es0

s t̂ss8dds8. In the Frenet-Serret representation,kW is
equivalent to the “Darboux vector.”

ComparingsA1d andsA2d swhen fully evaluatedd leads to
the relations

r/t = pD/P = uk'u/uk iu,

r = uk iu/k2,

t = uk'u/k2, sA3d

with k i= t̂sk ·t̂d, andk'=k − t̂sk ·t̂d=s1− t̂ t̂dk.
Allowing s to increase is equivalent to the helix growing

by material being added to one end. Double helical tails
grow in a more peculiar way: the growth occurs at a fixed
point in spacesat the bead surfaced and the tails rotate and
translate to accommodate the new growth. But the math-
ematical description is almost the same. For a dynamic de-
scription of a growing helix we replacekssd by vstd
= uvstdukssd whereuvstdu=ds/dt is the growth rate of the helix.
The points now represents the material added at timet=ss
−s0d / uvu. Geometrically, the helix “wraps” aroundk, so ukstdu
tells how many turns are forming as a function of linear
distancestail growthd, anduvstdu as a function of time. Since
ukstdu governs the geometry of the helix, it can be measured
from a single still picture, whileuvstdu also includes infor-
mation about the instantaneous growth rate.
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