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Hydrodynamic stability of helical growth at low Reynolds number
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A cylindrical object growing at a low Reynolds number can spontaneously develop a helical shape. We have
studied this phenomenon numerically, and our results may shed some light on the spontaneous formation of
helical tails of a dense protein network observed in experiments on actin based motility. We also identify an
unstable critical pitch angle which separates helices that straighten into rods from helices that flatten into planar
curves as they grow. At the critical angle the pitch angle remains constant, whereas both helical diameter and
pitch increase with the helical contour length.
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I. INTRODUCTION of a polarized network of actin filaments which form during

Translating an irregularly-shaped object in a fluid at lowthe locomotion of many infectious pathogens such as listeria
Reynolds number will, in general, induce a concurrent rotamoncytogene$3-5], rickettsia[5,6], and shigella[6,7], as
tion. The magnitude and axis of this rotation depend only orwell as subcellular organell¢8—12. An enzyme coating on
the shape of the object, the orientation of the object, and thtéhe surface of the bacteriar other cargpcauses actin fila-
translation vectofor velocity). Consider an object powered ments to grow there preferentially, and this growth generates
by a rigidly mounted engine, which produces constant thrustorce via the energetically favorable addition of actin mono-
In the body-centered reference frame, the thrust, or fdice, mers to the tips of existing actin filaments in the gel. This
is a constant vector. The velocity and angular velocity areqcess requires the intercalation of actin monomers at the
als_o co_nstant In tb's frame due to the drag tensor relatlonBead surface. Viscous drag, possibly enhanced by intercon-
shipsv=Af and w=Bf £1], whereA and B depend only on : . S . . .
the shape of the objettin the observer frame we find that nections with actin f_|Iaments in the surrogndlr_ng solution, an-
Ve XV F=wxXf andi=mX w=0. So the angular veloc- chors the cpmet ta!l, and so the bacterium is pushed away

’ ' from the existing tail.

ity vector is constant in the observer frame as well. As ex- C t tail motility has b di d extensivelv in th
plained further in Appendix A, the geometry of the path can . ~OME€t tall molility has been dISCUSSed extensively in the

be determined from the rotation vectofs) = w(t)/|v(t)| by biological Iit_erature and is considered.a prototype system. for
associating it with the Darboux vector of the Frenet-Serrepinderstanding the molecular mechanisms of cell locomotion.
parametrization of the path. Constanmeans the path is a On one hand, this kind of motion appears in both deadly
straight line, circle or regular helix. Various microorganismsmicrobes and functional subcellular organelles. On the other
display these geometries helical klinotaxisas they locate hand, it provides a clear experimental arena in which to ex-
favorable environment2]. plore general features of cytoskeletal actin dynamics. This is
In this paper we study a related issue. How would thebecause unlike other forms of actin based motiléyg., fili-
hydrodynamic forces on an irregular object that is growingpodia and lamellipodia which involve the complex dynam-
affect the growth? Inspired by a biological system, in whichics of chemical signaling and control, the comet tail motility
helical “tails” of densely gelled F-actin grow from N-WASP system is spontaneous, requiring only an enzyme coating on
coated micron-sized beads immersed in a broth of approprsmall object and a few factors already present in a host cell
ate proteins, we examine what would happen to an objeGytoplasm. The raw material and energy come from the host
that is pushed through a viscous fluid as it grows out from &e|| which plays only a passive role.
fixed point in space in a constant direction. The growth pro- ag 4 proof of this simplicity, comet tail motility can be
cess generates constant thrust, but in this case the Shapec%fmpletely reproduced in vitro. Micrometer-sized beads
the object changes as the object grows. As hydrodynamigw_lal liposomeg 16] and oil dropg17], when coated with

dra_g causes the object to rotate, new matenaj IS agded_ bpropriate enzymes, have all been shown to initiate actin-
various angles. The surprising result from our simulations is)

that even with random perturbations, helical shapes naturall
emerge.

Our specific goal is to examine the possible role of hydro
dynamics in influencing the shape of “comet tails,” or trails

ased motility in tissue extracts and even artifical mixtures of
¥ssential proteins. This work was particularly inspired by
some anomalous results of experiments in completely cell-
free systems. Under certain conditions beads have been ob-

This can also be thought of as decomposition of the viscous
response into Stokeslets and rotlets. When the Reynolds numbefThis property—that the motility relies almost entirely on con-
Re=0, the response is a linear sum of these fundamental Greerstituents of the host cell—suggests it could also be possible to use
function tensors. this method for delivering drugs into cells.
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Il. METHODS

2mp+ ) =s Simulation

Our simulation runs as follows. We imagine a point on a
plane from which material emerges normal to this plane in
| the form of thin cylindrical segments. We impose a transla-

D = 2ap tion of a fixed amount normal to the plane, calculate and
perform the resulting rotation of the existing tail, and finally

FIG. 1. lllustration of one turn of a helix “wrapped” and “un- add the new piece of tail between the base of the existing tail
wrapped.” Asz increases along the vertical edge by one pitch, theiwhich now lies above the growth plane after translation and
distance along the helix increases by the hypotersssp/ a. rotation and the origin in the growth plane. There is no need

to calculate the forces and torques since we can calculate the

resulting rotation directly6). We simplify our calculations
served to grow twin, symmetrical helical comet tdil§he by referring to a frame centered at the point of growth, where
observed mirror handedness of the tails places limits on théhe assumed force due to growth is applied. In this frame the
possible contribution of molecular handedness. Furthermorépplied torque is identically 0. The resulting rotation does
the thickness of the tails is about the same as the bead diarfiot depend on the viscosity of the fluid since the viscosity
eter, and the scale parameters of the helis. 1) are just falls out of the rotation equatl_ofexplamed later Though _
a few times this. So the helical tails represent a patten$€€Mingly paradoxical, this directly results from assuming
emerging spontaneously at the largest length scales in tH8€ Réynolds number Rel. As a result, the only truly free

system. In this work, we explore the possibility that hydro- parameter is the length of the growth segmeesssentially

dynamic forces play a role in this type of spontaneous patg:g Zeff?ggtisélcogigntvsgesir?wtelp Si;geto trr?igkﬁar:hteh t';nnfa”
tern formation. Additionally, a separate recent study shows$ P y Ply P 9

L . . . . compared to the size of the seed. In this sense, our simulation
motile listeria that consistently follow right-handed helical P

. : - L is “scale free.” We choose the size of the seed helix, which is
trajectoried 18]. Although the helicity of the actin filaments arbitrary, and we then pick the growth segment size to be

is thought to drive this pattern, the particular paths traced ouf o enough to get smooth growth.

are undoubtedly affected by hydrodynamic forces as well. e calculate the drag using the resistive force theory of

Our model may provide an additional tool for analyzing nydrodynamicgRFT) [20] in which a curvy, slender object

these comet tails. is modeled as a series of cylindrical elements which have
We turn now to the growth process. Out of the bead growsjrag coefficients per unit length both parallel and perpen-

an object which is a thin, bent rod. Measurements of shapejicular to their symmetry axis such thét=¢v, and f,

structure and protein concentration on listerial comet tails, aS; v . Decomposingv into vH:ﬁ-v and vL:(l—IAf) v,

well as manipulation of bead induced tails using laser twee- A . T —

- . wherel is a unit vector pointing in the direction of an ele-

zers suggest that they are rigid obje¢¥~10°-10* Pa) ment of lenath. we can write

[19], and there is no indication of the bends in comet tails gm.

straightening out due to relaxation. On the other hand, there ~ ~

must still be some freedom for the tail to move relative to the f=[gl+ £, 1(1=1D]-v. 1)

bead where the tail grows sin¢#&) the growth requires the

intercalation of new material at the bead surface, @dhe  This implies a drag tensor

tails generally grow in curvy shapes. The general idea is of a

rigid substance extruded into a fluid at low Reynolds number D=I,(1-(1-gih)= 12,(5;- (1 _q)fiij)_ 2

(Re) such that it has a degree of freedom to rotate at the point

of generation. An analogy might be a stream of hot glueThe parameteq=¢,/¢, holds information about the relative

being injected into a cold bath of glycerin. importance of longitudinal and transverse drag. For a simple
We have simulated this process and found that stable, hgtid, g=1/2. Long polymers can inhibit transverse motion

lical growth naturally emerges, but with some irregular fea-of long objects, so a high concentration of long polymers

tures. We looked at the growth dynamics for a range of hewill make q smaller. An object element at positiop moves
lical seeds and sampled the statistics of helices which growith a velocity v(r,) and experiences a forcé(r,)

from random initial conditions. We also examined the effect=p(r )v(r ), or more conveniently,
of random perturbations to the growth. Although the system

is simple to describe mathematicall§ppendix A), it is ana-
lytically intractable to solve. Nevertheless, we try to explain
the results within the theoretical context of the model in light
of the simulation results.

frn=DpVp. 3

The net forcgf) and torqug(7) on the object as a whole are
linear functions of the velocityv) and angular velocityw)
through the net drag tensors for the object as a whole. We

3private communications with Sebastian Wiesner and Mariecalculate these tensors from tlg, via sums over all ele-
France Carlier, CNRS. ments of the object usinfy,=f i+ wi; X r, and 7,=r, X f,;:
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>, > D, > D, xr, cos¢sing X +singsinfy +cosh z, (11
(fd@) =" = N ¥ (V ) where ¢ is a uniformly distributed arbitrary numbé®, 2]
Tdrag > > 'n X Dy > I XDy X1y |\® and 6 a random number with the mean value 0 and variance
n n n o?. We found that these perturbations do not greatly affect
|:DLL DLR:| ( Vv ) the stability of growth.
= - (4) We now address the role of viscosity. A proportionality
DrL Drrl\@

factor betweenw andv can only have units df'. The units

To generate translation, a force must be applied at the base of Dgg and Dg, arel®¢ and1%¢, respectively, so the combi-
the tail, which lies at the origin in the growth plarmg, We  nation —DR,{lDRL [see Eq.(6)] does have the expected
refer torque calculations to this point. Force balance withunits—the viscosity divides out. This does not mean that

perfect drag dictates that viscosity is not important for this system—it is crucial. In
fact, our entire theory, including the definition of drag ten-

(ftot> - (fapplied) + <fdrag> — (0) (5) sors, is based on the Re0 limit. That ¢ falls out merely

Tiot Tapplied Tdrag 0 tells us that in this limit, thgarticular value of the viscosity

does not affect the hydrodynamic response of the tail in

Since we choose, such thatz,gpjied="r 0 X fappiec=0 We au- . .
0 applied™ ' 0 " “applied terms of its net rotation.

tomatically impose the additional constraint that,=0. By
doing so, we can write

o=- DRR_lDRLV- (6) III. ANALYSIS OF HELIX GEOMETRY

At time t, we describe the tail or object by an ordered set of. 'tl'w? convemehnt p?rarrrllelt_ers foihdes_cirlbmg_ t?e sh@gve
points which represent the meeting poirits node$ be- instantaneous shapef a helix are the pitcip (distance be-

tween hypothetical, small, cylindrical elements. Let us delween turns and the diameteD (Fig. 1). One intuitive way

note this set of points, which form the “tail,” by adx 3 to rr,waKe a helix would be to feed'a pipe cleaner through
matrix (or “hypervector) one’s fingers at a constant rate, while simultaneoq(siyal-
- . ternately bending it and twisting it. For each time step:

o 0O 0 O (1) Push the pipe cleaner a little further through one’s
fingers and thumb.
s X1 Y1 4 . . e
_ _ (2) Apply a small twist with one’s fingers and thumb.
TO=|r2[=(% Y2 2 | @) (3) Take the other hand and bend over a small angle at
H P the base of the exposed part.
'y XN YN 2N If one bends and twists at constant rates one gets a regular

- helix. Steadily slowing the rates of bending or twisting yields
To evolveT, we calculater and w by (6) and construct the 5 pelix that becomes wider and steeper. The two control pa-
rotation operatomR(t) =Rm(t) =exfd -Atwy(t)eym|. We Use  rameters are the “bend” and “twist.” Since the twist vector
another hypervector, runs parallel to the wire, we call i, and the bend vectd, .
These vectors are rotation rates with respect to distance. The

vV,
vo following relations hold(Appendix A):

V=7 ®) wl k| |
: I I o | k.|
: p=2alvli = 2m b D=2y s =2 (12
Vo o> k[ o> |k[?

to translate every element of the tail. Note that in our simu\Where v is the feeding rate. The ratio of bend and twist
lation, v, represents each added segment, and has units gftermines the “shape” of the helix, or how it looks. This

length(the time is implicitly one step To update our object, 'atio is related to the “pitch angley, by
we first rotate and then translate the existing tail k,| =D

T(t+A0 =TORM™+ V(0. ) B T

The base of the tail is no longer at the origin after this transThe relations between these parameters are illustrated in Fig.
lation, so we finally lengthen the tail by adding a new node ati and are detailed in Appendix A.

the origin. There are now+1 points. Eaclr, is relabled

I.+1 and we create a newy=(0 0 0),

(13

IV. RESULTS

000
T— {( T )] (10) Our most important result is that the growth of a general-
ized, expanding helix can emerge spontaneously even when
In some simulations we also included random perturbationgve run simulations from random initial conditions
to the growth. We perturbed the growth by choosing a ran{Fig. 2@]. The pitch and diameter increase proportionally,
dom orientation forv,. While unperturbed sections point in but the axis and the helical angle remain constant. We used
the z direction, and the perturbed sections point toward Eqg. (11) to build the first three segments and then let the
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FIG. 2. Representative simulation results showing helices, which grow out of a range of(sg&the result of a single simulation run
for a helix growing out of thex-y plane. The “older” units are shaded darker. This helix was grown for 200 additional units from a random
seed three units longb) A helix grown aty= xi; for 10 000 steps from a seed helix 300 steps IdngA helix grown for 10 000 steps from
a seed with a large pitch anglg=70°) 300 steps long(d) A helix grown for 10 000 steps from a seed with a small pitch arigle
=20°) 300 steps long.

simulation run. Even random perturbations to the subsequetiissentially, the three initial segments form a minimum struc-

growth did not alter this result. ture needed to define an initial bend and twist. To show this
Understandably, as the tail gets longer, a perturbation to we sampled the statistics of the helical parameters of ran-

single segment becomes less and less important. An impodomly generated helices. Referring back (id), A¢, the

tant additional insight gained from these tests is how thalifference of successive azimuthal angles, is essentially a

initial “seed” determines the shape of the emerging helix‘twist” and A¢ a “bend,” i.e.,|k|=|A¢| and |k ,|=|A6|. Ac-
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FIG. 3. Simulation results showing progression of helical shapes depending on the initial and early stage helicdhahbgemverse
of the magnitude of the rotation vectdk|™, increases linearly with length as the helix grows. This result agrees with the tiigoThe
slope,c, of the line|k|1=cl for various values of shows a transition g, Whereciy, =2/ Xeary iS the value ofy after it has stabilized
in about 150 time steps.

cording to(13), tany=lk|/|k,|=|dé/dg/|d¢/dd (in an in- V. SCALING AND CRITICAL ANGLES
stantaneous sensefo approximate the result of randomly

. -1 . -1 .
chosend and ¢ we look af Referring back td6), Drg "Dg, scales likes™*, wheresis

the contour length of the tail, so we expect

_ (|Ag) =2 0.501...

Q2 2 T ()12
k()| "= V(s + [mD(S)] ~cs

tany = = .
s w|A6)Yy 3o o 21

(14)

for some constantg (recall that|v| is held constant This
linear relationship forlk| does emerge in our simulations
[Fig. 3@)]. However, the individual component,|=7 k|
=(p/2m)|k| and |k |=plk|=(D/2)|k| do not consistently

|| 0.7+0.1 scale linearly[see, for instance, Fig.(4)].

m = o Interestingly, we also notice a critical angle that deter-

mines the scaling properties |, P and D, and other pa-
N ) ) rameters as well. The diameter evolves close to linear and

1_'0 bett_er u_nderstand the stability we ran long-time S'ml_‘l_a'makes a transition ag;; where the coefficient e, JOES
tions with fixed helical seeds representing a range of initiakom >1 to <1 [Fig. 4(c)]. The pitch grows almost linearly
pitch angles. We used seed helices withkn7/48 for n o angles above critical angle 50.3%y.<53.8°, but a
€{1...23, giving p/D a range of values-0.07, 0.14...,  ¢|ose inspection shows that it is actually only linearyat
and 15.26. For each pitch angle and in each of 100 trials, Werig, 4). A magnified display around the critical range shows
let the growth continue for 6000 time steps, generating 2—nat . represents a maximum fax,.c, and an inflection
full turns of a helix. The typical results are illustrated in Figs. hoint for cyiymerer [Fig. 4d)].

2(b)—2(d) for 10 000 time steps. When the initial conditions = \yhen we examine the value of the slomg,q in the

are a regular helix, the tail grows into an expanding helixexpression ofk| "L as in Eq.(14), we see two regimes and the

that is heavily influenced by the seed helix. One interestinq:rossover appears to be gt '[Fig 3b)], where the slope
. i i . ,

effect is that even for very large see@s-5 turng the first happens to be 27. A similar transition appears in the graph

growth_step d_oes not ”_‘a_tCh t_he seed helix, a pr(_)perty_e>8f the final (evolved value of y versus early but stabilized
plored in detail later. This is evidently another manifestation, | g [Fig. 5(b)]. Here the transition aly= e JOES
. " Inal cri

of the fact that regular helicall growth_ s not stable. .lnSte.adfrom a linear regime to what appears to be a stable oscilla-
the stable growth is a generalized helix with expanding p|tcr}0ry point atys,=90°. The critical angle shows up again in

and diameter. the evolution of the value of, the pitch angl¢Fig. 5a)]. As
stated before, the value gfis generally not constant as the
“The true statistic averag@A¢|/|Ad]) is divergent. Perturbations helix grows. It makes a transition from increasing when
in the subsequent simulation ultimately drive the system away fron Xcrit 10 decreasing whemny> xcit- Xcrit @appears to be a
the A#=0 case, but corrections to the approximate statistics wouldtable value at which the helix grows in a special way: the
involve subsequent hydrodynamic interactions. pitch and diameter each increase but always in a way that

We do find this functional dependence onin our simula-
tions where we get
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FIG. 4. Evolution of helical pitch and diameter above and below the critical pitch af@€he pitch shows a transition from a regime
of nonlinear growth at high pitch angle to linear growth at belgyy. (b) In order to illustrate the transition at the critical pitch angle;,
deviation is plotted for the lines foy near y.i; from the line for y i, pitch(x) —pitch(xcit). (C) Cgiameter fOr various values ofy shows a
transition fromc<<1 toc>1 at x.- (d) To further illustrate that the slope is greateskat, the slopes of pitch and diameter are plotted as
functions ofy. The diameter exhibits a fairly linear increase with the contour length I. For the pitch, we calgyiatior only the slope of
the last 10% of the curve.

preserves the pitch angle. We have no explanation for thpushes away from where the growth takes place. The object
origin of the critical values. But we find it interesting that may spontaneously grow into an expanding helix in which
Xorit @ppears close to the observed valugyafi the twin tails  the pitch and diameter increase as the growth continues. We
observed experimental21]. However, this cannot explain identify a critical angle at which the growth stabilizes such
the phenomenon singe,;; appears to be an unstable critical that the pitch angle remains constéaithough the pitch and

point, i.e., sample runs that start out away frqgy do not  diameter still individually increase
converge toy.: (Fig. 5). This study has been inspired by a biomimetic system in

which an enzyme coated bead grows a pair of symmetric
helical “comet tails.” We report without explanation that the
critical angle mentioned above is very close to the observed
These simulations show that a regular pattern of growttpitch angle in these helical growths. But the actual role hy-
can emerge when an object in a low Reynolds number envidrodynamics might play in the formation of twin helical
ronment grows in such a way that the bulk of the objectcomet tails remains unclear, especially singg; is not a

VI. CONCLUSION
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FIG. 5. Simulation results relating helical angles of an initial seed, the early progression, and the stabilize@hshhpeonly value of
x for which y remains constant ig;. Either above or below this value, the pitch angle diverges figm (b) The ultimate value ofy
during growth is a function ofyseeq the pitch angle of the seed helix. Notice that o x.it points lie below the dotted line showing
Xfinal=Xinitial» @nd above the line fogx > yit. Thus y diverges away frony,;: during growth. Note that the dotted line does not cross the
graph atygi as it should ify.; really represents the value for whichy/ds=0. The reason is that the seed helix is a regular helix, and
therefore does not represent stable growth. That is the origin of the counterintuitive result that, for a regular helix seed to engl up with
= Xqrit» the original value ofy is not y.t. To get around this, we look at the “stabilized” valuexoéfter the initial jump. We could avoid this
by using a seed helix with the growth pattern that spontaneously emerges, but this is difficult to do in pi@cfice.initial jump iny is
most noticeable for addition of the first segmeidf. The value ofy stabilizes after about 200 time steps out of 6000.

stable critical point. Clearly in the case of the comet tails APPENDIX A: MATHEMATICAL DESCRIPTION

there is much more going on. For instance, the pitch and OF A HELIX
diameter remain more or less constant in the growth of heli-
cal comet tails. A helix trajectory is formed as one constantly turns left

In summary, we have identified a form of spontaneougor right) while climbing uphill. The path ones travels can be
pattern formation due to hydrodynamic forces. The role offully described by two parameters: the turning radibew
hydrodynamics has been examined in this work as one posharply one turns left or rightand the pitch(how steeply
sible contribution to the overall dynamics of helical cometuphill one climbg. The first parametep, is the radius of the
tails. More study may reveal the full picture for the cometcircle you make when viewed from directly above, and the
tail system and lead to a better overall understanding of cysecond can take the form of an angje(the pitch angle to
toskeletal actin dynamics. Whether or not the mechanisnthe vertical or a wavelengthp, the wavelength of the sine
analyzed in this work is relevant to other physical systemsyave you make as viewed directly from the side. A simple
and perhaps even manufacturing processes, remains to bwathematical description of this ig=pcod27/p)zX
seen. +p sin2w/p)zy +22, but if the axis of the helix is in a gen-
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eral direction, say;, then we must describe this helix by Comparing(Al) and(A2) (when fully evaluateplleads to

=p cog 27zl P)&,+p sin(2mz/p)&,+z8;. If we use the

dis- the relations

tance, s, along the helix as the parameter instead of the
height,z, we can write plT=aDIP =1k |/|k[,
F = pCOSo8, + p SiN—8, + asd (A1)
TP AT T p =kl
wherer=p/2m.° anda=1/\2+p?=cogy) (Fig. 1. y is the
constant angle a helix makes with its axis, by which we 7=k /K2, (A3)

mean the angle between the axis and the tangent

véctor

=df/ds If the axis of the helix is a vectok, then cogy ~ With k;=t(k ), andk | =k -f(k -f)=(1-tD)k.

=t.k=a. Another way to derivéA1) as the representation of  Allowing s to increase is equivalent to the helix growing

a helical space curve is to model the curve obtained if wdy material being added to one end. Double helical tails
wrapt around the rotation vectd(s) which points along the 9row in a more peculiar way: the growth occurs at a fixed

axis of the helix and a tangent vector to the helix at somePint in spaceat the bead surfageand the tails rotate and
point s, 1(sy). If the helix is uniform,k(s)=k. The tangent translate to accommodate the new growth. But the math-

vector along the helix at a distansdrom s is
i(s) = ex(s— sok] X t(so) = exf— (- sp)kigipJj(S0)

ematical description is almost the same. For a dynamic de-
scription of a growing helix we replac&(s) by w(t)
=|v(t)|k(s) where|v(t)| =ds/dt is the growth rate of the helix.

(A2)  The points now represents the material added at tirmés

so cosy=k -i(s)=k -f(sy) and the space curve of the helix is
r=/ zof(s’)ds’ . In the Frenet-Serret representatiok,

equivalent to the “Darboux vector.”

®Not to be confused with the torque vectar

-59)/|v|]. Geometrically, the helix “wraps” arourid so|k(t)|

i tells how many turns are forming as a function of linear
IS distance(tail growth), and|e(t)| as a function of time. Since
|k(t)| governs the geometry of the helix, it can be measured
from a single still picture, whildw(t)| also includes infor-
mation about the instantaneous growth rate.
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